「ゲームの構造に着目したプレイヤーの意思決定と戦略性に関する研究」の版間の差分

提供: JSSD5th2021
Jump to navigation Jump to search
(ゲームの定義と合理的選択)
(ゲームの定義と合理的選択)
43行目: 43行目:
 
これにより本研究が扱う対象としてのゲームを明確にすることができる。具体的には、将棋のようなボードゲームからバスケットボールのようなスポーツ、さらにはFPS<ref>ファーストパーソンシューティングゲームと呼ばれる、一人称視点で戦うゲーム。</ref>といったビデオゲームもこの定義に含まれている。
 
これにより本研究が扱う対象としてのゲームを明確にすることができる。具体的には、将棋のようなボードゲームからバスケットボールのようなスポーツ、さらにはFPS<ref>ファーストパーソンシューティングゲームと呼ばれる、一人称視点で戦うゲーム。</ref>といったビデオゲームもこの定義に含まれている。
  
 また伊藤ら(2018)によると、戦略型ゲームにおいて「合理的なプレーヤとは、できるかぎり自身の利得を大きくするように意思決定を行うプレーヤのことである」と述べられている。ここで、自身の利得を大きくするように行動するというのは一見当然に思えるが、ゲームにおいてそれが成り立たない場面というのも存在する。例えば、小さな子供と一緒にゲームをしている際、その子供に楽しんでもらおうとわざと負けてあげたり、手加減をしてあげたりするというのはゲーム内で定められた利得である勝利を目指した行為ではない。このように自身の利得を目指していない状況というものは存在しており、それが実生活という観点において必ずしも非合理的という訳ではないが、本研究を進めるうえでプレイヤーの目的はしっかりと定めておく必要があるという理由から、特に断らない限りプレイヤーは勝利もしくは最大の利得を得るためプレイするものとし、それを実現するための行動選択は合理的選択であるとする。
+
 また伊藤ら(2018)によると、戦略型ゲームにおいて「合理的なプレーヤとは、できるかぎり自身の利得を大きくするように意思決定を行うプレーヤのことである」と述べられている。ここで、自身の利得を大きくするように行動するというのは一見当然に思えるが、ゲームにおいてそれが成り立たない場面というのも存在する。例えば、小さな子供と一緒にゲームをしている際、その子供に楽しんでもらおうとわざと負けてあげたり、手加減をしてあげたりするというのはゲーム内で定められた利得である勝利を目指した行為ではない。しかし本研究を進めるうえでプレイヤーの目的はしっかりと定めておく必要があるという理由から、特に断らない限りプレイヤーは勝利もしくは最大の利得を得るためプレイするものとし、それを実現するための行動選択は合理的選択であるとする。
  
 
==ゲームのルール構造==
 
==ゲームのルール構造==

2021年10月19日 (火) 14:50時点における版



古瀬亮太 / 九州大学芸術工学府デザインストラテジー専攻
FURUSE Ryota/ Kyushu University


Keywords: Game Informatics, Decision Theory, Game Theory


Abstract
For games as play, we will analyze the structure of the game by combining the two perspectives of "player decision-making" and "game rules". In particular, by focusing on the player's skill and the structure of the rules, this research will clarify how the structure of the game rules affects the player's decision-making and how the players' skill affects the strategic ability of the game.



研究の背景と目的

 普段私たちがゲームを遊ぶとき、ルールの中で定められた選択肢の中からどの行動を選択するのかについて考えて決定するというプロセスを踏んでいる。たとえばトランプゲームであれば「手札の中からどのカードを選ぶべきか」であったり、戦闘ゲームであれば「どういう立ち回りをするべきか」であったりといった具合である。そこで本研究では、プレイヤーが何を基準にして行動を選んでいるのかという部分に着目して、ゲームの分析をしようとしている。具体的には、ボードゲームやビデオゲームといったゲームについて、「プレイヤーの意思決定」、「ゲームのルール」という2つの視点を組み合わせながら分析していく。特に、プレイヤーの技量とルールの構造に着目することで、ゲームのルールが有する構造がプレイヤーの意思決定にどのような影響を与えているか、プレイヤーの技量によってゲームの戦略性がどのように変化していくかといった点について明らかにすることを目的としている。

研究の手法

 本研究では大きく以下の4つのプロセスで研究を行う。

1.文献調査
2.ゲームの定義およびプレイヤーにとって合理的な選択とは何かの定義
3.ゲームのルール構造に関する考察
4.ゲームプレイヤーの技術に関わる戦略性の考察

 1章では意思決定理論とゲーム情報学的立場からみたゲーム及びゲームプレイヤーについて調査を行い、次章以降の土台とする。2章では1章をもとにゲームおよび研究対象となるプレイヤー像の定義を行い、具体例を交えつつプレイヤーの思考に関して可能な限り一般化を行う。3章では理論上可能な最も理想的な選択をするプレイヤーを仮定し、ゲームのルール構造がその理想的プレイヤーの思考プロセスにどのような違いをもたらすかについて考察する。続く4章ではより人間的なプレイヤーに関して、ミスや技術不足といった観点も含めた考察を行う。

意思決定理論

 竹村(1996)によると、意思決定とは、「一群の選択肢の中からある選択肢を採択すること、すなわち行為の選択である」と定義されている[1]。例えば我々が日常生活の中で、朝家を出るときに今日着て行く服を決定したり、夕食のためどの食材を購入するか決定したりするのは意思決定であると言える。意思決定理論では、この意思決定に関して集合の概念を用いて表現する。すなわち意思決定者の選択肢の集合をA、選択によって引き起こされる結果の集合をX、結果に関わるような状態の集合をΘとすると、結果Xは集合Aと集合Θの直積A×Θからの写像fで表すことができる。さらに結果の集合Xについて、行為者にとってどの結果がより好ましいかという選好構造(X,R)を含めることで意思決定問題を表現することができ、これらをまとめた集合として(A,Θ,X,f,(X,R))と記述される。本研究で扱うようなゲームでは、Aは合法手全体の集合、Θは局面やその他の情報の集合、Xは手を選択した結果の集合、fはルールによって定められた処理、(X,R)は各結果に対するプレイヤーの局面評価と言い換えて考えることができる。

ゲームの定義と合理的選択

 カイヨワによる遊びの定義[2]が用いられることもあるが、本研究においてはゲームの情報学的定義[3]に則り、それに4つ目の条件を加えた次のようにゲームを定義する。

・プレイヤーが存在する。
・ルールが存在し、プレイヤーの存在やプレイヤーの行動の選択肢を規定する。
・ルールによって目標が定められておりプレイヤーはそれを目指す。
・ルールが適用される範囲が実生活から切り離されている。

これにより本研究が扱う対象としてのゲームを明確にすることができる。具体的には、将棋のようなボードゲームからバスケットボールのようなスポーツ、さらにはFPS[4]といったビデオゲームもこの定義に含まれている。

 また伊藤ら(2018)によると、戦略型ゲームにおいて「合理的なプレーヤとは、できるかぎり自身の利得を大きくするように意思決定を行うプレーヤのことである」と述べられている。ここで、自身の利得を大きくするように行動するというのは一見当然に思えるが、ゲームにおいてそれが成り立たない場面というのも存在する。例えば、小さな子供と一緒にゲームをしている際、その子供に楽しんでもらおうとわざと負けてあげたり、手加減をしてあげたりするというのはゲーム内で定められた利得である勝利を目指した行為ではない。しかし本研究を進めるうえでプレイヤーの目的はしっかりと定めておく必要があるという理由から、特に断らない限りプレイヤーは勝利もしくは最大の利得を得るためプレイするものとし、それを実現するための行動選択は合理的選択であるとする。

ゲームのルール構造

ゲームの分類

 ゲーム情報学(ゲーム研究)の分野でゲームはそのルールの持つ特性によって分類される。その中でも特に以下の分類が用いられることが多い。

プレイヤーの数
 ソリティアや数独パズルは1人ゲーム、囲碁や将棋は2人ゲーム、ババ抜きのように3人以上のゲームは多人数ゲームと呼ばれる。

零和性
 プレイヤーの利得の総和が常にゼロになっているゲームを零和ゲームという。
 麻雀は点棒の総和が常に一定であるため零和ゲームであり[5]、ゲーム理論で扱われる囚人のジレンマなどは非零和ゲームである。

確定性
 将棋や〇×ゲームのように偶然の関与しないゲームを確定ゲームといい、すごろくやポーカーといった偶然の要素が含まれるゲームを不確定ゲームと呼ぶ。

完全情報性
 すべての手番において自分と相手のすべての行動や状態を知ることができるゲームを完全情報ゲームと呼び、囲碁や将棋などが含まれる。
 それに対し麻雀や多くのカードゲームなど、相手の手札のようなルール上知り得ない情報が存在するものを不完全情報ゲームと呼ぶ。

有限性
 有限回で終了することが保証されているゲームを有限ゲームという。囲碁や麻雀などほとんどのゲームは有限ゲームである[6]

理想的なプレイヤーの意思決定

 プレイヤーの思考プロセスについて考えるため、ルールの定める範囲で理論上知りうるすべての事象を把握したうえで常に合理的な選択を行うプレイヤーをそのゲームの理想的なプレイヤーと呼ぶことにする。一例として私たちが○×ゲームの全ての分岐を知っており勝利に向けて正しい選択をするとき、○×ゲームの理想的なプレイヤーであると言える。しかしほとんどのゲームで理想的なプレイヤーというのは存在しないと言ってもよいだろう。ゲーム研究において頻繁に取り上げられる二人零和有限確定完全情報ゲームである将棋は、理想的なプレイヤーにとっては〇×ゲームと同様に先の盤面を読み続けるゲームであり、必勝手順に従うことが本質となる。そこに不確定要素が加わると二人零和有限不確定完全情報ゲームとなる。一例としてバックギャモンを挙げると、バックギャモンにおいても理想的なプレイヤーは確率的に最も勝率が高い選択肢を選び続けることになり、勝敗が確率的に決まるという点を除けば実質的に確定ゲームと大きく変化することはない。このことは、理想的なプレイヤーならば完全情報ゲームは最適な戦略がルールの中に収まっていると言い換えることができる。しかし不完全情報ゲームになると大きな差異が生じる。こうしたゲームとしてはポーカーがあり、ポーカープレイヤーは相手の手札や戦略を読む必要がある。相手の戦略が自分と同じだと仮定した場合にはナッシュ均衡と呼ばれる状態に落ち着くが[7]、真の相手の戦略が仮定と異なる場合にはそれが最適な戦略であるとは限らない。実際は相手の戦略に合わせた搾取プレイが有効であるが、ルールの定める範囲外である相手の持つ戦略を正しく見積もるということは理想的なプレイヤーの定義より可能な範疇を超えている。そこで相手の戦略も含め、ルール上絶対に知り得ない情報以外の全てを知っている全知全能のプレイヤーを仮定すると、そこではじめて理想的なプレイヤーの完全情報不確定ゲームと同様に扱うことができるようになる。ここで示したような形で、定めた条件の下での完璧なプレイヤーを想定することによりゲームのルールの構造とプレイヤーの意思決定の関係を見ることができる。

一般的なプレイヤーと戦略性

 現実のプレイヤーは先に述べたような理想的なプレイヤーでも全知全能のプレイヤーでもない。そこでここからは一般的なプレイヤーについて考える。例として〇×ゲームを取り上げてみたい。まず先手が最初に〇をつける場所として、リーチを作りやすそうな真ん中が選ぶのが良さそうだという感覚がある。この感覚は分岐をすべて確認すると実際に正しいのだが、直感的な判断として先を読まずとも何となくわかるという部分はあるだろう。このように我々一般的なプレイヤーは正確な先読みをもとにした思考(アルゴリズム的思考と呼ばれる)に対して、予想や仮定に基づくような分析的な思考(ヒューリスティックな思考)を行っている。加えて、将棋のような複雑なゲームになると、データや定跡をもとに手組みをしたり、相手の苦手そうな展開を望んだりといった、確定完全情報ゲームであるにもかかわらずルールの中だけに収まらない形で戦略を組むようになる。さらにはミスやその他思考に必要な演算量といった要素も絡んでくるため、ルールの構造と共により複雑な分析が必要になってくる。

今後の方針

 ルール構造の持つ特性についてより深く検討するとともに、一般のプレイヤーの意思決定について、具体的な例を踏まえつつ論じていく。また、必勝手順同士の場合も含めたプレイヤーにとっての選好順序の傾向や思考量をコストであると見做す場合なども考察していく予定である。

脚注

  1. 行動意思決定論(2009) 竹村和久 日本評論社
  2. 遊びと人間(1990) ロジェ・カイヨワ/多田道太郎・塚崎幹夫訳 講談社
  3. ゲーム情報学概論 -ゲームを切り拓く人工知能-(2018) 伊藤毅志編著/保木邦仁・三宅陽一郎共著 コロナ社
  4. ファーストパーソンシューティングゲームと呼ばれる、一人称視点で戦うゲーム。
  5. ゲーム開始時の持ち点が0となるように点数から引いて考えるとよい。
  6. 麻雀は親が聴牌流局を繰り返すことで理論上は無限に続くが、現実的には有限ゲームと言ってもよいだろう。
  7. 相手の選択を確率分布として捉えることで期待利得を考えた混合戦略を導入する必要がある。

参考文献・参考サイト

  • 行動意思決定論(2009) 竹村和久 日本評論社
  • 意思決定の基礎(2001) 松原望 朝倉書店
  • 意思決定と合理性(2016) ハーバード・A・サイモン/佐々木恒男・𠮷原正彦訳 ちくま学芸文庫
  • ゲーム情報学概論 -ゲームを切り拓く人工知能-(2018) 伊藤毅志編著/保木邦仁・三宅陽一郎共著 コロナ社
  • ゲームメカニクス大全 ボードゲームに学ぶ「おもしろさ」の仕掛け(2020) Geoffrey Engelstein, Isaac Shalev/小野卓也訳/すごろくや調査協力 翔泳社
  • 遊びと人間(1990) ロジェ・カイヨワ/多田道太郎・塚崎幹夫訳 講談社