Bayesian Statistics
ベイズ統計とは18世紀にベイズによって発見された「ベイズの定理」を用いた統計手法で、20世紀半ばに発展した比較的新しい統計分野です。
今日の統計学は大きく分けると、記述統計学、推計統計学、ベイズ統計学の3つに分けられますが、立場や考え方の違いで「頻度主義(一般的に扱われる統計)」と「ベイズ主義(ベイズ統計)」とに分けられます。頻度主義は「母数は不変で、データは変わり得る」と考えて真の値を求めますが、ベイズ主義は「得られたデータは不変で、母数は変わり得る」として推測を行います。
頻度主義 | ベイズ主義 | |
母数(θ) | 定数 | 確率変数 |
データ(x, y) | 確立変数 | 定数 |
記述統計学・推計統計学:ロナルド・フィッシャーを中心に発展
ベイズ統計学:トーマス・ベイズによって理論が確立し、20世紀半ばに発展
ベイズ統計は、事前確率を元に、得られたデータから新たな確率を導出する統計手法で、従来の記述統計・推計統計(頻度主義の統計)とは大きく異なります。記述統計・推計統計では「母数は不変でデータが変わる」と考えるのに対し、ベイズ統計では「母数が変わりデータは不変である」と考えます(頻度主義の学者とベイズ主義の学者は対立しているようです)。
ベイズの定理を言葉で書くと
ベイズの定理は「原因 → 結果」ではなく、「結果 → 原因」という「逆確率」を求めるもので、かつては「主観確率を扱うのは科学的ではない」とされて注目されていませんでしたが、近年ではその実用性の高さがわかり、以下のようなサービスに利用されています。
参考サイト: